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Abstract

Salmonella enterica is a prevalent food-borne pathogen which can carry multi-drug resistance 

(MDR) and could pose a threat to human health. Identifying the genetic elements associated with 

MDR in Salmonella isolated from animals, food, and humans can help determine the sources of 

MDR in food animals and their impact on human health. Representatives of MDR S. enterica 

serovars most frequently isolated from healthy animals, retail meat, and human infections in the 

U.S. and Canada were subjected to detailed genetic analysis (n=56). These included U.S. slaughter 

(n=12), retail (n=9), and human (9) isolates, and Canadian slaughter (n=9), retail (n=9), and 

human (n=8) isolates. These isolates were assayed by microarray for antimicrobial resistance and 

MDR plasmid genes. Genes detected encoded resistance to aminoglycosides (alleles of aac, aad, 

aph, strA/B); beta-lactams (blaTEM, blaCMY, blaPSE-1); chloramphenicol (cat, flo, cmlA); 

sulfamethoxazole (sulI); tetracycline (tet(A, B, C, D) and tetR); and trimethoprim (dfrA). Similar 

resistance genes were detected regardless of serovar, source, or location. Hybridization with 

IncA/C plasmid gene probes indicated that 27/56 isolates carried a member of this plasmid family; 

however these plasmids differed in several highly variable regions. Cluster analysis based on 

genes detected separated most of the isolates into two groups, one with IncA/C plasmids and one 

without IncA/C plasmids. Other plasmid replicons were detected in all but one isolate, and 

included I1 (25/56), N (23/56) and FIB (10/56). The presence of different mobile elements along 

with similar resistance genes suggest that these genetic elements may acquire similar resistance 

cassettes, and serve as multiple sources for MDR in Salmonella from food animals, retail meat, 

and human infections.
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Introduction

Salmonella enterica is a leading cause of food borne illness worldwide.2,5,6,12,29 Salmonella 

can be transferred to humans through contaminated water and food products, leading to 

food-borne illness. In most cases, salmonellosis in an otherwise healthy individual results in 

a self-limiting infection that does not require antimicrobial treatment. Invasive Salmonella 

infections are more severe and require antimicrobial therapy.2,8 Antimicrobial resistant 

Salmonella are a concern, as infections caused by these microorganisms may be more 

difficult to treat compared to their susceptible counterparts.8 Both the U.S. and Canada 

developed initiatives to monitor the dissemination of antimicrobial resistance in Salmonella 

and other enteric pathogens isolated from animals, food, and humans.18 The National 

Antimicrobial Resistance Monitoring System (NARMS) was developed in 1996 to monitor 

U.S. antimicrobial resistance trends in human diagnostic isolates (Centers for Disease 

Control and Prevention, CDC), food animals (U.S. Department of Agriculture, Agricultural 

Research Service, USDA-ARS) and retail meats (U.S. Food and Drug Administration, 

Center for Veterinary Medicine, FDA-CVM) (http://www.fda.gov/AnimalVeterinary/

SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/

default.htm). In Canada, the Canadian Integrated Program for Antimicrobial Resistance 

Surveillance (CIPARS) was developed in 2002 to monitor similar antimicrobial resistance 

trends (http://www.phac-aspc.gc.ca/cipars-picra/index-eng.php). In these programs, isolates 

are collected and tested for resistance to antimicrobials used in both human and veterinary 

medicine.

Multi-drug resistant (MDR) Salmonella which are resistant to two or more classes of 

antimicrobials, are frequently encountered and may reduce the effectiveness of treatments.21 

In 2007, 13% of Canadian Salmonella isolated from chickens and swine during slaughter 

(abattoir) and 3% isolated from retail chicken were resistant to five or more antimicrobials 

and consequently MDR. Almost 10% of Salmonella isolated in Canada from humans 

between 2004 and 2006 also exhibited antimicrobial resistance (http://www.phac-aspc.gc.ca/

cipars-picra/index-eng.php). In 2007, 10% of Salmonella isolated in the U.S. from chicken, 

turkey, cattle and swine slaughter isolates were resistant to five or more antimicrobials while 

5.6% of retail meat isolates exhibited similar resistances. In U.S. human isolates, 6.9% were 

resistant to five or more antimicrobials (http://www.fda.gov/AnimalVeterinary/

SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/

ucm209340.htm).

Plasmids are often associated with antimicrobial resistance in Salmonella and may also 

contain additional genes that provide heavy metal resistance, sanitizer resistance, or that aid 

in virulence and environmental adaptability.8,21,24,29,30 These plasmids are small, circular 

pieces of DNA that are often self-transmissible to other bacteria through conjugation. The 

transfer of plasmids from one bacterial cell to another results in the horizontal transfer of 
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genetic material, allowing acquisition of multiple genes by the recipient.10,27,30 Plasmids 

with the IncA/C replicon have been linked to multiple drug resistance in Salmonella enterica 

associated with food animals as well as the fish pathogen Yersinia ruckeri and Y. pestis, the 

causative agent of plague.42 In addition to IncA/C, several other plasmid replicons have 

been associated with MDR Salmonella, including B/O, HI1, HI2, I1, N, F, and P many of 

which are found to be co-resident in some MDR Salmonella.37

This study was conducted to identify the antimicrobial resistance genes and genetic elements 

associated with MDR in Salmonella isolated from humans, animals, and retail meat by 

NARMS and CIPARS. Genetic analyses included detection of antimicrobial resistance and 

MDR plasmid genes by DNA microarrays and PCR detection of plasmid replicons.9,23 The 

detailed analysis of a collection of Salmonella representative of the most frequently isolated 

MDR serovars, identified antimicrobial resistance and MDR plasmid genes present in U.S. 

and Canadian isolates. Cluster and linkage analysis of this data was used to identify isolates 

with significantly similar profiles of antimicrobial resistance and plasmid genes from the 

different surveillance programs. Several genetic commonalities such as the presence of 

IncA/C plasmids were detected in MDR Salmonella isolated from different sources 

including humans, retail meat, and animals at slaughter. Comparable MDR genetics were 

also identified in isolates from similar animal, meat, and human sources sampled by the U.S. 

and Canadian surveillance programs.

Materials and Methods

Isolate selection, culture conditions, and antimicrobial susceptibility testing

Salmonella enterica chosen for this study were isolated from various sources by the U.S. 

Food Safety and Inspection Service (slaughter isolates, n=12), the U.S. Food and Drug 

Administration, Center for Veterinary Disease (retail isolates, n=9), the Centers for Disease 

Control and Prevention (human isolates, n=9), the Canadian Integrated Program for 

Antimicrobial Resistance Surveillance (slaughter isolates, n=9; retail isolates, n=9) and the 

Public Health Agency of Canada (human isolates, n=8). Isolates were obtained, cultivated, 

maintained, and stored as frozen stock cultures using standard methods. Culture media was 

obtained from Difco™ (Becton Dickinson and Company, Sparks, MD). All Salmonella 

isolates were subjected to testing via the Sensititre™ semi-automated antimicrobial 

susceptibility system following the manufacturers instructions (TREK Diagnostic Systems, 

Inc., Westlake, OH) for susceptibility to amikacin, gentamicin, kanamycin, streptomycin, 

ampicillin, amoxicillin-clavulanic acid, ceftiofur, ceftriaxone, cefoxitin, sulfamethoxazole/

sulfisoxazole, trimethoprim-sulfamethoxazole, chloramphenicol, ciprofloxacin, nalidixic 

acid and tetracycline. Serovars with the highest frequency of MDR for each source agency 

were determined (MDR defined as resistance to two or more classes of antimicrobials). 

Isolates where then chosen from these serovars that were resistant to the maximum number 

of antimicrobial compounds (described below). Prevalence data, detailed isolation and 

testing methods available in U.S. NARMS reports: http://www.fda.gov/AnimalVeterinary/

SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/

ucm209340.htm, and Canadian CIPARS reports: http://www.phac-aspc.gc.ca/cipars-picra/

pubs-eng.php
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Microarray design and construction

The DNA microarrays and methods used for this analysis have been previously reported and 

validated.23,31,32 Briefly, the DNA microarrays consisted of 1267 gene probes. Of those 

probes, 775 were designed to detect antimicrobial resistance genes found in the National 

Center for Biotechnology Information (NCBI) database. The other 487 gene probes were 

designed to detect plasmid genes identified in six strains of bacteria.31,32 IncA/C gene 

probes on the microarray were designed from plasmid sequences identified in Yersinia 

ruckeri str. YR71 pYR1, Y. pestis biovar Orientalis str. IP275 pIP1202, Photobacterium 

damselae subsp. piscicida pP99-018, Salmonella enterica subsp. enterica serovar Newport 

str. SL254 pSN254, Photobacterium damselae subsp. piscicida pP91278 and Escherichia 

coli p1658/97. Gene sequences from the plasmid pHCM1 found in S. enterica subsp. 

enterica serovar Typhi str. CT18 were used to design probes for the genes in this IncHI1 

plasmid. The microarrays were constructed by spotting probes onto Corning UltraGAPS 

amino-silane coated slides (Corning Inc., Life Sciences, Acton, MA) with an Qarray mini 

robot (Genetix, Hampshire, UK) and post processed following the manufacturers 

recommendations (Corning, Inc.) as previously described.31,32

DNA isolation, labeling, microarray hybridization, and scoring

Total DNA from the isolates was prepared with the GenElute Bacterial Genomic DNA kit 

(Sigma, St Louis, MO) following instructions for Gram-negative bacteria from 5 mL of 

overnight cultures grown in LB broth at 37°C with shaking as previously described. Cye 

dye-labeled dCTP (Amersham, Piscataway, NJ), Klenow fragment (New England Biolabs, 

Beverly, MA) and random primers were used to label Salmonella genomic DNA overnight 

in 37°C water bath.23 Labeled DNA was purified using Qiagen PCR clean-up kit (Qiagen, 

Valencia, CA), and hybridized to the microarray over night at 42°C in a Corning 

hybridization chamber as previously described. Microarrays were washed following the 

manufacturers protocol for hybridization with formamide buffer (Corning, Inc.). Slides were 

scanned using ScanArray Lite microarray analysis system and images were analyzed using 

the ScanArray Express software version 1.1 (Packard BioChip Technologies, Billerica, 

MA). Positive hybridizations were determined and scored as previously described.23,32

Plasmid replicon typing

Three panels of multiplex PCR were used to determine the presence of 18 plasmid replicons 

commonly found in Enterobacteriaceae. PCR primers and parameters were previously 

described.9,30

Cluster analysis of isolates

Relationships between isolate based on gene content was determined by hierarchical cluster 

analysis based on antimicrobial resistance and plasmid genes detected by microarray 

analysis. Open source CLUSTER 3.0 was used for this analysis with Euclidean distance for 

gene content.13,16 Dendrogram was viewed using Java TreeView version 1.1.4r338 (http://

jtreeview.sourceforge.net).

Glenn et al. Page 4

Microb Drug Resist. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://jtreeview.sourceforge.net
http://jtreeview.sourceforge.net


Statistical analysis

Linkage disequilibrium (LD) was calculated as an extension of Fisher’s exact probability 

test on contingency tables39 as instituted by the program Arlequin17. Standard settings were 

used, 10,000 steps in the Markov chain and 1,000 dememorization steps; and calculations of 

D, D′, and r2 coefficients were made with a significance level of 0.05.

Results

MDR in U.S. NARMS and Canadian CIPARS Salmonella enterica isolates selected for the 
study

The Salmonella enterica serovars chosen for the study were the most frequently isolated 

MDR serovars found in each source. For U.S. NARMS this was Salmonella serovars 

Typhimurium, Heidelberg, and Newport for both human (CDC1 – CDC9) and animal 

(USDA1 – USDA12) isolates. U.S. retail meat isolates (FDA1 – FDA9) were chosen from 

Salmonella serovars Typhimurium, Heidelberg, and Hadar. Isolates from Canadian CIPARS 

were serovars Typhimurium, Heidelberg, and Enteritidis from humans (CH1 – CH8), 

Typhimurium, Heidelberg, Hadar, and Saintpaul, from animals (CA1 – CA9), and serovars 

Typhimurium, Heidleberg and Hadar from retail meat (CR1 – CR9). Isolates resistant to the 

greatest number of antimicrobial compounds were chosen from those Salmonella serovars 

for each agency’s collection from that source. The numbers of antimicrobial compounds the 

isolates were resistant to range in number from three compounds to 13, with an average of 

resistance to seven antimicrobials (Table 1 and Figure 1).

Detection of antimicrobial resistance and plasmid genes by microarray analysis

Resistance genes consistent with the observed phenotypes were detected in the isolates. A 

summary of the genes detected most frequently in the isolates is in Figure 1 (complete 

hybridization data available in supplemental table S1); an exception was isolate CH1, where 

only a strA/B gene was detected. The most prevalent aminoglycoside resistance genes 

detected were alleles of aac(3) (24/56), aac(6′) (22/56), aadA (34/56), aadB (27/56), aadE 

(14/56), aph (21/56), and strAB (39/56). Detected β-lactam resistance associated genes 

included blaTEM (32/56), blaCMY-2 (30/56), blaPSE-1 (36/56), and the β-lactamase resistance 

transcriptional regulatory gene ampR (5/56). Chloramphenicol resistance genes included cat 

(36/56), floR (27/56) and cmlA (7/56). Sulfamethoxazole resistance genes in the isolates 

include sulI (26/56) and sulII (23/56). Frequently detected tetracycline resistance associated 

genes were tet(A) (45/56), tet(B) (8/56), tet(C) (8/56), tet(D) (7/56) and the regulatory gene 

tetR (50/56). Also detected in several isolates were alleles of trimethoprim resistance genes, 

such as dfr (18/56).

Many of the isolates hybridized to multiple probes for IncA/C and HI1 plasmid genes. 

Twenty-seven isolates hybridized to a large number of IncA/C plasmid genes including 

genes in core regions used to define the IncA/C plasmid backbone (Table 1).31,42 Detection 

of these core regions, based upon sequence data from the pYR1 and pSN254 plasmids42, 

indicate that IncA/C plasmids are likely present in these 27 isolates. Eight of nine U.S. 

human isolates had IncA/C plasmid genes detected, three of which contained genes in all 12 

core regions. The remaining isolates were missing genes in core regions 6–7, 6–9 or 6–10, 
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which have been identified as a region of insertions and deletions (indels) in the family of 

IncA/C plasmids.24,31,32,42 Three of nine U.S. retail meat isolates contained IncA/C plasmid 

genes but none of the isolates contained genes in all 12 core regions. One isolate, FDA9, is 

missing genes in region 10, another, FDA8, is missing regions 7–10 and another isolate, 

FDA2, is missing genes in regions 7–12. Four of the 10 U.S. animal isolates that contain 

IncA/C plasmids hybridized to genes in all 12 core regions. The remaining six isolates are 

missing genes in either regions 1–2, 7–9, or region 10–12. Five of 8 Canadian isolates from 

humans likely contain IncA/C plasmids. Three of the Canadian IncA/C positive human 

isolates contained genes in all 12 core regions and two isolates were missing genes in the 

indel at regions 6–9 or 7–9. Canadian Human Isolate CH1 had a different pattern of core 

IncA/C genes detected than all isolates in that group, with IncA/C regions 1, 4, 6–9, and 11 

being missing. None of the Canadian retail meat or animal isolates had IncA/C genes 

detected in a large enough number to indicate the presence of IncA/C plasmids. However, 

one of the Canadian retail meat isolates, CR2, was the only isolate in the study with 

numerous IncHI1 plasmid genes detected (183/206), most likely indicating the presence of 

an HI1 plasmid.24

Plasmid replicon typing

Replicons were detected in all isolates except Canadian animal isolate CA4. The IncA/C 

(27/56), I1 (25/56), N (23/56) and FIB (10/56) were the most prevalent replicons detected 

among all isolates (Figure 1 and Table 1). The IncA/C replicon was detected in all of the 27 

isolates where large numbers IncA/C genes (>52) were detected by microarray analysis, 

confirming the presence of IncA/C plasmids in these isolates. These included U.S. human, 

retail and slaughter isolates, as well as Canadian human isolates. However, the IncA/C 

replicon was not detected in Canadian retail or animal slaughter isolates. Plasmid replicons 

I1 and N were widespread and detected in isolates from all sources in both countries. 

Replicons FII, FIA, P, F, and HI1 were present in fewer isolates. Most isolates (n=51) 

contained one or two replicon types, three isolates were positive for three replicon types and 

a single isolate was positive for four replicons. Overall, half of these 18 replicon types 

associated with Enterobacteriaceae were detected in at least one of the isolates.9

Cluster and LD analysis

Almost all of the Salmonella isolates fell into two major groups based upon the 

antimicrobial resistance and plasmid genes detected. These were group A (n=27) with 

numerous IncA/C plasmid genes detected and group B (n=27) with very few IncA/C genes 

detected (Figure 1 and Table 1). Two isolates, CR2 and CA2, were an exception to this and 

did not group together or with any of the other isolates. For CR2, this was due to the 

detection of an almost complete HI1 plasmid making its genes detected unique from all 

other isolates in the study. While isolate CA2 had several IncA/C plasmid genes detected, it 

did not have enough to cluster with group A, and also was not PCR positive for the IncA/C 

replicon. However, CA2 had too many IncA/C genes detected to cluster with group B and 

thus was a lone isolate. All 27 isolates of group A were IncA/C positive via microarray 

analysis as well as plasmid replicon typing. CH1, an isolate from a human in Canada, was 

different from other isolates in group A. This isolate did not hybridize with as many IncA/C 

gene probes as other isolates in group A, but five of the core regions were detected (2, 3, 5, 

Glenn et al. Page 6

Microb Drug Resist. Author manuscript; available in PMC 2015 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10, and 12) as was the IncA/C replicon by PCR analysis (Table 1). Group A consists mostly 

of U.S. slaughter, U.S. human and Canadian human isolates, although some U.S. retail meat 

isolates were present in this cluster. In addition to IncA/C, replicons I1, N and FIB were 

detected in group A. Cluster B contained 27 isolates in which IncA/C was not detected by 

microarray analysis or replicon typing. This cluster consists mostly of Canadian retail, 

Canadian animal slaughter and U.S. retail meat isolates. However, U.S. slaughter, U.S. 

human and Canadian human isolates were present in lower numbers. Replicons I1, FIB, N, 

P, FIA, and FII were also frequently detected in this cluster.

Linkage disequilibrium (LD) analysis detected significant linkage between the isolates’ 

plasmid replicon, serovar, source agency, and animal source (cattle, chicken, swine, or 

turkey and their retail meat products, and also human isolates) (Figure 2). Significant 

linkage often corresponded with the separation of isolates into groups A and B by the cluster 

analysis of the microarray data. Most notably IncA/C had significant linkage with serovar, 

agency, and animal source, which are reflected in clusters A and B. All six Salmonella 

Newport isolates were in group A and contained IncA/C; while none of the six Salmonella 

Hadar isolates contained IncA/C and thus were in group B, leading to LD between IncA/C 

and these serovars. Significant positive LD was also detected for IncA/C to human isolates, 

with 14 out of 17 human isolates in group A; likewise, IncA/C was linked to cattle isolates, 

with all five in group A. The animal or animal meat product from which the isolate was 

collected also demonstrated a negative association with IncA/C. Only one of the 12 swine 

isolates and one of nine turkey isolates contained IncA/C plasmids and were in group A, 

while 10 of the remaining swine and all eight remaining turkey isolates were found in group 

B. These linkages suggest that the groups formed by clustering isolates based upon 

antimicrobial and plasmid genes are significantly different from each other and reflect gene 

content associated with specific replicons, serovars, agencies, and animal sources.

Animal and IncI1 were linked due to eight out of nine turkey isolates having the IncI1 

replicon detected; conversely, only four out of 12 swine isolates had the IncI1 replicon. 

IncI1 also had a negative relationship with IncN attributable to only one of 23 IncN positive 

isolates also had the IncI1 replicon detected. Replicon FIB showed linkage with serovar, 

agency, and animal due to eight isolates being Typhimurium, only one isolate was from a 

U.S. agency (USDA), and six were from swine. Replicon FIB was also detected in eight of 

the isolates found in group B, and thus had a negative association with IncA/C and group A. 

However, some linkages are less clear due to the small number of isolates with the replicon 

detected. Linkages with IncF, FIA, FII, and P were detected, but are suspect due to only one 

or two of these replicons being detected in all of the isolates. For example, IncP is in 

disequilibrium with serovar and IncN, but only one P replicon was detected which is not a 

sampling large enough to determine if this association is representative of the bacterial 

population. Animal and agency also showed significant LD, which is likely an artifact due to 

no Canadian isolates were available from beef or cattle for this study.

Discussion

To investigate MDR in Salmonella enterica isolated from animals, retail meat, and infected 

humans, a small sampling of the most frequently isolated MDR serovars in the U.S. and 
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Canada were analyzed to determine genetic mechanisms associated with their antimicrobial 

resistance. Overall, many of the antimicrobial resistance genes detected in the study have 

been previously found in MDR isolates from the U.S. and Canada in other studies using 

similar methods or other complementary methods.24,30,31,42 The large number of genes 

detected in this study and their combination with plasmid genes and plasmid replicon typing 

allows a better understanding of MDR in Salmonella isolates from these sources. Cluster 

analysis based on the genes detected divided the isolates into two large clusters: A, with 

IncA/C plasmids and B, without IncA/C plasmids. This reveals the impact of IncA/C 

plasmids on MDR in U.S and Canadian isolates, while also implicating other genetic 

elements that are also associated with MDR in Salmonella.

The resistance genes detected within group A and group B were shared at a high level, 

indicating the presence of common mechanisms. Antimicrobial resistance genes usually 

found in IncA/C plasmids (e.g. blaCMY-2, floR, aac(3), aadA, aphA1, strA/B, sulI, sulII, 

dfrA, tet(A), tet(B), tet(C), tet(D), and tetR) were detected in most isolates of group 

A.24,30,31,42 Isolates in group B had resistance genes indicative of integrons like SGI-1 or 

other MDR plasmids (e.g. blaPSE-1, blaTEM, floR, aac(3), aadA, sulI, dfrA, tet(A/G), and 

tetR).24,30,35 In Addition, many of the resistance genes found in isolates from both group A 

and B were also similar, in spite of the different genetic vehicles for these MDR 

genes.24,30,35 This may reflect the cassette nature of many of these resistance genes, where 

the genes encoding MDR can be transferred to plasmids, to integrons, and/or to the 

chromosome resulting in different genetic elements carrying similar resistance genes. For 

example, many IncA/C plasmids and a variety of Salmonella Genomic Island-1 (SGI-1) 

sequences have been shown to share resistance genes cassettes.24,30 In addition, IncA/C 

plasmids have been shown to mobilize genetic elements such as SGI-1 and antimicrobial 

resistance gene cassettes in-trans.14 This type of movement could explain many of the genes 

found in common throughout these MDR isolates.

Certain resistance genes were also found to be widespread among these isolates and between 

the two clusters. For example, the blaCMY-2 gene that encodes resistance to extended 

spectrum cephalosporins and other beta-lactams was found in isolates from both cluster A 

and B.11,21,22 MDR IncA/C plasmids that carry the blaCMY-2 gene have been reported and 

characterized as a major contributor to MDR in Salmonella from the U.S. and 

Canada.3,11,21,22 In IncA/C positive group A, 23/27 isolates have the blaCMY-2 gene 

detected. However, 7/27 isolates in group B also have the blaCMY-2 gene detected. Five of 

these are Salmonella Heidelberg isolates which also have the IncI1 plasmid replicon 

detected. IncI1 plasmids carrying a blaCMY-2 gene have recently been found in Salmonella 

Heidelberg human isolates in the U.S.19,20 Therefore, it is likely that there are two or more 

genetic elements carrying the blaCMY-2 genes in MDR Salmonella from in these isolates. 

The prevalence of MDR Salmonella resistant to cephalosporins due to blaCMY-2 encoding 

IncA/C plasmids has declined recently in animal isolates; however, the spread of a blaCMY-2 

gene by other genetic elements, such as IncI1, could cause increased prevalence of 

Salmonella resistant to extended spectrum cephalosporins in the future.

A large amount of variability was found in the core backbone regions of the IncA/C 

plasmids detected in group A. Most of the regions missing are previously described indels 
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within regions 6–10, 1–2 and 7–12.24,31,32,42 The genes encoded in these indels have been 

observed to have effects on a great diversity of plasmid functions. Some of these include: 

transmissibility of the plasmids, mobilization of other genetic elements, phenotypes 

conferred by the plasmids, response to selective pressures including heavy metals, chemical 

sanitizers, and traditional antimicrobials, as well as phylogenetic implications.24,31,32,42 

These aspects of the IncA/C plasmid family have been well characterized in other studies of 

Salmonella as well as other bacteria containing IncA/C plasmids.24,31–33,41,42 Interestingly, 

while IncA/C is associated with almost half of the MDR Salmonella isolates in this study, 

there is a large amount of diversity within the structure of the plasmids in these isolates, 

possibly indicating several different phylogenetic origins of the IncA/C plasmids in these 

Salmonella isolates and even within a single serovar of Salmonella. This suggests that there 

are multiple sources of MDR IncA/C Salmonella in these isolates rather than the spread of a 

single IncA/C plasmid among the different MDR Salmonella found in animals, retail meat, 

and human infections. Alternatively, the plasmids may have spread some time ago and then 

undergone mutations and deletions within certain serovars or in certain environments 

resulting in the diversity we have observed.

Other plasmids that could potentially carry MDR genes were detected in each of the large 

clusters, including IncI1 which has been previously shown to carry blaCMY-2 or MDR in 

bacteria isolated from humans and animals.19,20,25,26 IncN, IncFIB, and other plasmid 

replicons were also detected demonstrating that the genetic elements carrying MDR, while 

dominantly associated with IncA/C and I1, are complex and could be associated with other 

plasmids and genetic elements such as integrons like Salmonella Genomic Island 1 

(SGI1).24,30,35 This observation is also supported by the two lone MDR isolates that are 

genetically distinct from the two large clusters, including one carrying an IncHI1 plasmid 

which is often associated with MDR in Typhoid and Paratyphoid serovars of 

Salmonella.36,40

Within both large clusters, isolates which grouped together into sub-clusters also had other 

similarities. The isolates were often the same serovar when isolated from the same type of 

animal or animal meat, or when isolated by the same agency or in the same country. This 

was especially true for human isolates which clustered most closely to other human isolates 

and in some cases human isolates from the U.S. and Canada clustered together. However, 

human isolates did not clustered with animal or meat isolates. The clustering did show that 

14 out of 17 human isolates were associated with IncA/C, a relationship between source and 

IncA/C that exhibits significant LD. This likely reflects an association between MDR human 

salmonellosis and Salmonella serovars, such as Newport, Heidelberg, Typhimurium, and 

others that carry a plasmid from the MDR IncA/C family.19,20,24 This association has been 

described in several reports on MDR human isolates collected during this time period 

(2005–2007), and emphasizes the impact of IncA/C plasmids on U.S. and Canadian human 

MDR Salmonella infections.4,15,19,20,24 U.S. animal MDR Salmonella isolates were also 

found to be mostly IncA/C positive (10/12), as were three of the U.S. retail meat isolates. In 

contrast all Canadian animal and retail meat isolates lacked the IncA/C 

plasmid7,21,22,24,28,30. Canadian monitoring of cattle and beef had previously detected MDR 
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Salmonella with the IncA/C plasmid, however sampling of cattle and beef in Canada was 

discontinued before this study.

Human infections caused by MDR Salmonella are usually thought to be foodborne, with 

animals serving as reservoirs of resistance and retail meats acting as a vector for human 

disease.1,2,43 Agencies in the U.S. and Canada have developed programs to monitor the 

levels of antimicrobial resistance in Salmonella found in food animals, retail meats, and 

humans. This study was designed to investigate MDR Salmonella collected by these 

programs and to determine the genetic elements associated with antimicrobial resistance. 

Genetic elements, such as IncA/C and IncI1 plasmids were found in most of the isolates, but 

other plasmids and genetic elements were also associated with MDR in many of these 

Salmonella. It was also observed that IncA/C was found in most human MDR isolates from 

both the U.S. and Canada. These results suggest that in addition to phenotypic monitoring of 

antimicrobial resistance in Salmonella, investigations of the genetic elements causing 

resistance is necessary to understand the cause, prevalence, and spread of MDR and 

determine the impact of food borne Salmonella on human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cluster analysis of Salmonella enterica isolates based on results of microarray detection of 

antimicrobial resistance and plasmid genes. The IncA/C positive cluster, group A, and 

IncA/C negative cluster, group B are labeled and indicated by brackets. Complete cluster 

analysis data is available in Supplemental Figure S1. Resistance profiles of each isolate is 

listed with the following abbreviations for the antimicrobials: AMC, amoxicillin-clavulanic 

acid; AMK, amikacin; AMP, ampicillin; CHL, chloramphenicol; CIP, ciprofloxacin; FOX, 

cefoxitin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; SMX, 
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sulfamethoxazole; STR, streptomycin; SXT, trimethoprim-sulfamethoxazole; TCY, 

tetracycline; TIO, ceftiofur. Antimicrobial resistance genes detected are summarized for 

each isolate. Genes and gene families with multiple probes are summarized and presented 

only once with different genes and alleles of related genes separated by a comma; full 

hybridization data are available in Supplementary Table S1. Replicons detected in each 

isolate by PCR analysis are also listed with (−) indicating that none of the replicons assayed 

were detected.
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Figure 2. 
Pairwise linkage disequilibrium based on nine plasmid replicon groups, serovar, phage type 

and animal source of Salmonella Typhimurium strains. (+) indicates a P value of ≤0.05 or 

less and significant linkage disequilibrium; and a (−) indicates a P value of greater than 

>0.05 and no significant linkage disequilibrium. Replicon groups B/O, FIC, T, K, W, Y, 

FIA, X, L/M were not present in any isolate and were subsequently removed from the 

analysis.
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